

Raven : Hydrological modeling and analytics

Raven is a server providing access to hydrological modeling and analysis through the Web Processing Service (WPS) standard. It was made to help hydrologists work with climate data and automate some of the tedious work required to calibrate and run hydrological models. Its modeling engine is the Raven [http://raven.uwaterloo.ca] hydrological modeling framework, which can emulate a variety of lumped and distributed models.

Raven is part of the birdhouse [https://birdhouse.readthedocs.io], a community building a suite of WPS servers supporting climate services and sustainable development goals. The idea is that instead of downloading large volumes of data locally and then analyzing it, part of the analysis can be done remotely by servers, close to the source data. Instead of users sending a plain download request, users send a request for pre-processed data. Work with low-added value can be delegated to a server, and the real research is performed on reduced datasets on local machines.

In this model, scientists need to interact closely with a server to submit requests and poll the server for its response once the job is complete. Because the boilerplate code and formats used to communicate with a server can detract from the science, we’ve built a generic WPS client interface (see birdy [https://birdy.readthedocs.io]) that hides the WPS protocol behind a native looking python interface. Remote WPS processes can be called just like a python function, returning an asynchronous response whose progress can be easily monitored.

User documentation

	Getting started

	Installation

	Configuration

	Notebooks

	Developer Guide

	Processes

	Changes

Credits

This project was funded by the CANARIE [https://www.canarie.ca] research software program.

Hydrological models are based on the Raven [http://raven.uwaterloo.ca] modeling framework.

Indices and tables

	Index

	Module Index

	Search Page

Getting started

	Install birdy [https://birdy.readthedocs.io] with pip install birdhouse-birdy

	Connect to a Raven WPS server. You may deploy your own version or use the server hosted at Ouranos [https://ouranos.ca].

from birdy import WPSClient

url = "https://pavics.ouranos.ca/twitcher/ows/proxy/raven"
wps = WPSClient(url)

The wps object behaves as a module, holding functions that, instead of being executed on your machine, call a remote process on the server. See the notebook tutorials for examples.

If you don’t want to install anything and just try it, go to https://pavics.ouranos.ca/jupyter and login with the public account and the public password. Note that your notebooks will be publicly visible and modifiable, so don’t leave anything valuable there. Also, from time to time we’ll reset the public folders, so make sure you keep a local copy of your work.

Installation

	Install from Conda-Forge (suggested)

	Install from GitHub

	Installing and Launching RavenWPS

	Use Ansible to deploy Raven on your System

Install from Conda-Forge (suggested)

Create an Anaconda environment named ravenwps-env:

$ conda env create -n ravenwps-env python=3.7
$ source activate ravenwps-env

This should now prepend the environment to your shell commands (ie: (ravenwps-env) $).
Now install directly from conda-forge:

(ravenwps-env) $ conda install -c conda-forge raven-wps

Install from GitHub

Check out code from the Raven GitHub repo and start the installation:

$ git clone https://github.com/Ouranosinc/raven.git
$ cd raven

Environment Setup with Anaconda (macOS/Linux)

Create Conda environment named raven:

$ conda env create -n ravenwps-env -f environment.yml
or alternatively,
$ make conda_env

The environment can then be activated with:

$ source activate ravenwps-env

This should now prepend the environment to your shell commands (ie: (ravenwps-env) $).

Environment Setup using System Libraries and Sources (Linux)

Warning

This approach is not formally supported, but is presently working for the time being.
It is up to the user to install the raven model and ostrich model optimization binaries.
Those can be downloaded from source via the following links:

	RAVEN: http://raven.uwaterloo.ca/Downloads.html

	OSTRICH: https://github.com/usbr/ostrich/

Note

While the following shows how to install raven for an Deb-based Linux, if the OS-equivalent dependencies
are available to Python, raven should be able to run on any modern operating system (macOS/Windows/*nix).

First we need to install several system libraries that RavenWPS and RavenPy depend upon and make a virtual environment:

$ sudo apt-get install libhdf5-dev netcdf-bin libnetcdf-dev libgdal-dev libproj-dev libgeos-dev libspatialindex-dev python3-dev
$ pip3 install virtualenv
$ virtualenv ravenwps-env
$. ravenwps-env/bin/activate

We then need to install the ravenpy python library from sources:

(ravenwps-env) $ git clone https://github.com/CSHS-CWRA/RavenPy/
(ravenwps-env) $ pip install RavenPy/.[gis]
(ravenwps-env) $ pip install RavenPy/. --verbose --install-option="--with-binaries"

If we want to perform an interactive/editable installation for dev purposes, substitute the following for the final installation command:

(ravenwps-env) $ pip install -e RavenPy/. --verbose --install-option="--with-binaries"

Installing and Launching RavenWPS

Now we can install the raven-wps service:

(ravenwps-env) $ pip install -e .
or alternatively,
(ravenwps-env) $ make install

For development you can use this command:

(ravenwps-env) $ pip install -e .[dev]
or alternatively,
(ravenwps-env) $ make develop

Then clone the Raven Test Data repo somewhere on your disk:

(ravenwps-env) $ git clone https://github.com/Ouranosinc/raven-testdata.git

You can then run the test suite by doing:

(ravenwps-env) $ export RAVENPY_TESTDATA_PATH=/path/to/raven-testdata
(ravenwps-env) $ pytest

Start Raven PyWPS service

After successful installation you can start the service using the raven command-line:

(ravenwps-env) $ raven-wps --help # show help
(ravenwps-env) $ raven-wps start # start service with default configuration
or alternatively,
(ravenwps-env) $ raven-wps start --daemon # start service as daemon
loading configuration
forked process id: 42

The deployed WPS service is by default available on:

http://localhost:9099/wps?service=WPS&version=1.0.0&request=GetCapabilities.

You can find which process uses a given port using the following command (here for port 5000)::

$ netstat -nlp | grep :5000

Check the log files for errors:

$ tail -f pywps.log

… or do it the lazy way

You can also use the Makefile to start and stop the service:

(ravenwps-env) $ make start
(ravenwps-env) $ make status
(ravenwps-env) $ tail -f pywps.log
(ravenwps-env) $ make stop

You can also run Raven as a Docker container.

Use Ansible to deploy Raven on your System

Use the Ansible playbook [http://ansible-wps-playbook.readthedocs.io/en/latest/index.html] for PyWPS to deploy Raven on your system.

Configuration

Command-line options

You can overwrite the default PyWPS [http://pywps.org/] configuration by using command-line options.
See the Raven help which options are available:

$ raven start --help
--hostname HOSTNAME hostname in PyWPS configuration.
--port PORT port in PyWPS configuration.

Start service with different hostname and port:

$ raven start --hostname localhost --port 5001

Use a custom configuration file

You can overwrite the default PyWPS [http://pywps.org/] configuration by providing your own
PyWPS configuration file (just modifiy the options you want to change).
Use one of the existing sample-*.cfg files as example and copy them to etc/custom.cfg.

For example change the hostname (demo.org) and logging level:

$ cd raven
$ vim etc/custom.cfg
$ cat etc/custom.cfg
[server]
url = http://demo.org:9099/wps
outputurl = http://demo.org:9099/outputs

[logging]
level = DEBUG

Start the service with your custom configuration:

start the service with this configuration
$ raven start -c etc/custom.cfg

Notebooks

Most notebooks have now been migrated to the RavenPy [https://pypi.org/project/ravenpy/] repository available on GitHub [https://github.com/CSHS-CWRA/ravenpy].

Those that remain are related to geoprocessing:

Geoprocessing

	Region Selection and Map Preview with Ipyleaflet

	Subsetting climate variables over a watershed

Region Selection and Map Preview with Ipyleaflet

[1]:

Import the necessary libraries to format, send, and parse our returned results
import os

import birdy
import geopandas as gpd
import ipyleaflet
import ipywidgets

If your notebook is version prior to 5.3, you might need to run this command jupyter nbextension enable --py --sys-prefix ipyleaflet. For more information see https://ipyleaflet.readthedocs.io/en/latest/installation.html.

[2]:

Create WPS instances
Set environment variable WPS_URL to "http://localhost:9099" to run on the default local server
pavics_url = "https://pavics.ouranos.ca"
raven_url = os.environ.get("WPS_URL", f"{pavics_url}/twitcher/ows/proxy/raven/wps")

raven = birdy.WPSClient(raven_url)

[3]:

Build an interactive map with ipyleaflet

initial_lat_lon = (48.63, -74.71)

leaflet_map = ipyleaflet.Map(
 center=initial_lat_lon,
 basemap=ipyleaflet.basemaps.OpenTopoMap,
)

Add a custom zoom slider
zoom_slider = ipywidgets.IntSlider(description="Zoom level:", min=1, max=10, value=6)
ipywidgets.jslink((zoom_slider, "value"), (leaflet_map, "zoom"))
widget_control1 = ipyleaflet.WidgetControl(widget=zoom_slider, position="topright")
leaflet_map.add_control(widget_control1)

Add a marker to the map
marker = ipyleaflet.Marker(location=initial_lat_lon, draggable=True)
leaflet_map.add_layer(marker)

[4]:

Add an overlay widget

html = ipywidgets.HTML("""Hover over a feature!""")
html.layout.margin = "0px 10px 10px 10px"

control = ipyleaflet.WidgetControl(widget=html, position="bottomleft")
leaflet_map.add_control(control)

def update_html(feature, **kwargs):
 html.value = """
 <h2>USGS HydroBASINS</h2>
 <h4>ID: {}</h4>
 <h4>Upstream Area: {} sq. km.</h4>
 <h4>Sub-basin Area: {} sq. km.</h4>
 """.format(
 feature["properties"]["id"],
 feature["properties"]["UP_AREA"],
 feature["properties"]["SUB_AREA"],
)

[5]:

Load the map in the notebook
leaflet_map

Before continuing!

Try dragging and placing the marker at the mouth of a river, over a large lake such as Lac Saint Jean (next to Alma, east of the initial marker position), or anywhere else within North America.

[6]:

user_lonlat = list(reversed(marker.location))
user_lonlat

[6]:

[-74.71, 48.63]

[7]:

Get the shape of the watershed contributing to flow at the selected location.
resp = raven.hydrobasins_select(location=str(user_lonlat), aggregate_upstream=True)

[8]:

Before continuing, wait for the process above to finish.

Extract the URL of the resulting GeoJSON feature
feat = resp.get(asobj=False).feature
gdf = gpd.read_file(feat)
gdf

[8]:

 Subsetting climate variables over a watershed

Subsetting climate variables over a watershed

Hydrological models are driven by precipitation, temperature and a number of other variables depending on the processes that are simulated. These variables are typically provided by networks of weather stations. For practicality, these point values are often interpolated over space to create gridded products, that is, arrays of climate variables over regular coordinates of time and space.

Global hydrological models however require time series of average climate variables over the entire watersheds. When the watershed includes multiples stations, or covers multiple grid cells, we first need to average these multiple stations or grids to yield a single value per time step. The Raven modeling framework can work directly with gridded datasets, provided the configuration includes the weights to apply to the array. For example, all grid cells outside of the watershed could be given
weights of 0, while all grid cells inside given a weight proportional to the area of the grid that is inside the watershed.

While there are now utilities to work with grid weights, it is usually more computationaly efficient to feed Raven sub-watershed averages. Here we fetch a watershed outline from a geospatial data server, then use the Finch server to compute the watershed average.

[1]:

Import the necessary libraries.
import datetime as dt
import os

import birdy
import geopandas as gpd
from ravenpy.utilities.testdata import get_file

[2]:

Set the links to the servers.
Note that if Finch is a remote server, Raven needs to be accessible on the next because some cells
below use the output from Raven processes to feed into Finch.

url_finch = os.environ.get(
 "FINCH_WPS_URL", "https://pavics.ouranos.ca/twitcher/ows/proxy/finch/wps"
)

url_raven = os.environ.get(
 "WPS_URL", "https://pavics.ouranos.ca/twitcher/ows/proxy/raven/wps"
)

Establish client connexions to the remote servers
finch = birdy.WPSClient(url_finch)
raven = birdy.WPSClient(url_raven)

Extracting the watershed countour and sub-basins identifiers

Let’s try to identify a sub-basin feeding into Lake Kénogami. We’ll start by launching a process with Raven to find the upstream watersheds. The process, called hydrobasins_select, takes as an input geographical point coordinates, finds the HydroSheds sub-basin including this point, then looks up into the HydroSheds database to find all upstream sub-basins. It returns the polygon of the watershed contour as a GeoJSON file, as well as a list of all the sub-basins IDs within the watershed.

[3]:

Send a request to the server and get the response.
hydrobasin_resp = raven.hydrobasins_select(
 location="-71.41, 47.96", aggregate_upstream=True
)

Wait for the process to complete before continuing with calculations.

[4]:

Collecting the response: the watershed contour and the sub-basins ids
feature_url, sb_ids = hydrobasin_resp.get()
feature, sb_ids = hydrobasin_resp.get(asobj=True)

[5]:

Plot our vector shapefile
df = gpd.GeoDataFrame.from_file(feature_url)
df.plot()

display(f"Number of subbasins: {len(sb_ids)}")

'Number of subbasins: 4'

[image: ../_images/notebooks_Subset_climate_data_over_watershed_6_1.png]

Subsetting a gridded climate dataset

We can then use this watershed outline to average climate data. The watershed shape is given as a GeoJSON file to the average_polygon process, along with the gridded file to average.

[6]:

Compute the watershed temperature average.
nc_file = "https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/birdhouse/testdata/xclim/NRCANdaily/nrcan_canada_daily_tasmin_1990.nc"

resp = finch.average_polygon(
 resource=str(nc_file),
 shape=feature_url,
 tolerance=0.1,
 start_date=dt.datetime(1990, 5, 1),
 end_date=dt.datetime(1990, 9, 1),
)

[7]:

Get the output files and plot the temperature time series averaged over the sub-basins.
ds, meta = resp.get(asobj=True)
ds.tasmin.plot()

Metalink content-type detected.
Downloading to /tmp/tmpro13sotf/nrcan_canada_daily_tasmin_1990_avg.nc.

[7]:

[<matplotlib.lines.Line2D at 0x7faa4b005850>]

[image: ../_images/notebooks_Subset_climate_data_over_watershed_9_2.png]

 Developer Guide

Developer Guide

	Re-create a fresh environment

	Building the docs

	Running tests

	Run tests the lazy way

	Running notebooks tests

	Starting local Jupyter server to edit/develop notebooks

	Bulk refresh all notebooks output

	Prepare a release

	Bump a new version

Warning

To create new processes look at examples in Emu [https://github.com/bird-house/emu].

Re-create a fresh environment

$ make stop # in case you previously did 'make start'
$ conda deactivate # exit the current 'raven' conda env so we can destroy it
$ conda env remove -n raven # destroy the current conda env to recreate one from scratch
$ conda env create -f environment.yml
$ conda activate raven
$ make develop # install raven-wps and additional dev tools

Building the docs

First install dependencies for the documentation:

$ make develop

Run the Sphinx docs generator:

$ make docs

Running tests

Run tests using pytest [https://docs.pytest.org/en/latest/].

First activate the raven Conda environment and install pytest.

$ source activate raven
$ pip install -r requirements_dev.txt # if not already installed
OR
$ make develop

Run quick tests (skip slow and online):

$ pytest -m 'not slow and not online'"

Run all tests:

$ pytest

Check PEP8:

$ flake8

Run tests the lazy way

Do the same as above using the Makefile.

$ make test
$ make test-all
$ make lint

Running notebooks tests

Assuming that the raven conda env has already been created and is up-to-date and
raven-wps has been installed with make develop:

 # start local raven-wps server to test against
 $ make start # remember to make stop once done

 # to test all notebooks
 $ make test-notebooks

Or::

 # to test a single notebook (note the .run at the end of the notebook path)
 $ make docs/source/notebooks/Subset_climate_data_over_watershed.ipynb.run

The notebooks may also require other WPS services (Finch and Flyingpigeon). By
default these are from the production server but we can point the notebooks to
local servers if needed for development purposes:

to test all notebooks
$ make FLYINGPIGEON_WPS_URL=http://localhost:8093 FINCH_WPS_URL=http://localhost:5000 test-notebooks

Or:

to test a single notebook (note the .run at the end of the notebook path)
$ make FLYINGPIGEON_WPS_URL=http://localhost:8093 FINCH_WPS_URL=http://localhost:5000 docs/source/notebooks/Subset_climate_data_over_watershed.ipynb.run

If instead we want to run the notebooks against the production raven-wps server
or any other raven-wps servers:

to test all notebooks
$ make WPS_URL=https://pavics.ouranos.ca/twitcher/ows/proxy/raven/wps test-notebooks

Or:

to test juste 1 notebook (note the .run at the end of the notebook path)
$ make WPS_URL=https://pavics.ouranos.ca/twitcher/ows/proxy/raven/wps docs/source/notebooks/Subset_climate_data_over_watershed.ipynb.run

We can also override all three of the server variables (WPS_URL, FINCH_WPS_URL,
FLYINGPIGEON_WPS_URL) to pick and choose any servers/services from anywhere we want.

Starting local Jupyter server to edit/develop notebooks

Assuming that the raven conda env has already been created and is up-to-date and
raven-wps has been installed with make develop:

start local raven-wps server to test against
$ make start # remember to make stop once done

to start local jupyter notebook server listing all current notebooks
$ make notebook # Control-C to terminate once done

Can also override all three WPS_URL, FINCH_WPS_URL and FLYINGPIGEON_WPS_URL here as well,
just like 'make test-notebooks' to be able to pick and choose any servers anywhere we want.

By overriding these variables at the 'make notebook' step, we will not need to
override them one by one in each notebook as each notebook will also look
for those variables as environment variables.

Bulk refresh all notebooks output

This automated refresh only works for notebooks that passed make
test-notebooks above. For those that failed, manually starting a local
Jupyter server and refresh them manually.

Assuming that the raven conda env has already been created and is up-to-date and
raven-wps has been installed with make develop:

start local raven-wps server to test against
$ make start # remember to make stop once done

to refresh all notebooks
$ make refresh-notebooks

Or:

to refresh a single notebook (note the .refresh at the end of the notebook path)
$ make docs/source/notebooks/Assess_probabilistic_flood_risk.ipynb.refresh

Can also override all three of the server variables (WPS_URL, FINCH_WPS_URL and FLYINGPIGEON_WPS_URL) here as well,
just like 'make test-notebooks' to be able to pick and choose any servers/services from anywhere we want.

Prepare a release

Update the Conda specification file to build identical environments [https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#building-identical-conda-environments] on a specific OS.

Note

You should run this on your target OS, in our case Linux.

$ conda env create -f environment.yml
$ source activate raven
$ make clean
$ make install
$ conda list -n raven --explicit > spec-file.txt

Bump a new version

Make a new version of Raven in the following steps:

	Make sure everything is commit to GitHub.

	Update CHANGES.rst with the next version.

	Dry Run: bumpversion --dry-run --verbose --new-version 0.8.1 patch

	Do it: bumpversion --new-version 0.8.1 patch

	… or: bumpversion --new-version 0.9.0 minor

	Push it: git push

	Push tag: git push --tags

See the bumpversion [https://pypi.org/project/bumpversion/] documentation for details.

 Processes

Processes

 Changes

Changes

0.18.2 (2023-07-06)

	Removed pin on owslib below v0.29 and pin on fiona below v2.0.

	Added a GitHub Workflow to test against macOS builds.

	Adapted zonal statistics processes to support the latest fiona and zonalstats API changes.

0.18.1 (2023-05-23)

	Removed obsolete components related to HPC interfaces (#477)

	Added Python3.11 to supported versions with a build for Python3.11 in CI (#477)

	Adjusted ReadMe to reflect recent significant changes (#477)

	Updated deprecated GitHub Actions (#477)

0.18.0 (2023-05-23)

Major Changes

	singularity components have been removed from raven (#470)

	Removed Raven WPS capabilities for hydrological modelling, graphing and forecasting (moved to RavenPy) (#464)

	Removed notebooks and migrated to Ravenpy. Adapted them to the new Ravenpy configuration (#464)

	Removed all tests related to Raven WPS modelling (#464)

	Raise error message if shape area for NALCMS zonal stats raster is above 100,000 km2. (#473)

0.17.1 (2023-04-04)

Internal Changes

	Dockerfile configuration now uses Python3.8 and condaforge/mambaforge base image (#466)

	pandas is temporarily pinned below v2.0 (#466)

0.17.0 (2023-02-28)

Major Changes

	Updated testing ensemble to use pytest-xdist (#448)

	Updated RavenPy to v0.11.0, raven-hydro to v3.6, and fiona to v1.9 (#461)

	Modified several geospatial processes to adapt to new APIs (#461)

	Datetime signatures for some models used in notebooks have been adjusted/fixed (#453)

Internal Changes

	Makefile updates to better perform notebook refresh actions (#459)

	Pre-commit style updates (#446, #447, #449, #461)

	Use provision-with-micromamba GitHub Action in CI workflows (#462)

0.16.0 (2022-11-01)

Major Changes

	Added data assimilation workbook (#421)

	Overhaul of all existing notebooks within documentation (#424)

	Added notebooks for case-study paper (#435)

	Update to RavenPy 0.8.1 (#439)

	Dropped support for Python3.7 (#439)

Internal Changes

	Added pre-commit.ci to workflows and updated black formatting (#428 and #429)

	Adjust documentation to remove sphinx-autoapi artefact files and set ReadTheDocs to fail_on_warning (#439)

	
	Set pre-commit to run new correction and verification hooks (#439):
	
	pyupgrade: Ensure that coding style uses Python3.8+ conventions

	pygrep: Checks for bare noqa comments and malformed code blocks in documentation

	nbqa: Black, Isort, PyUpgrade now runs over notebooks

	check-manifest: Ensure relevant modules and data are explicitly installed

	black + blackdoc + yamllint: Clean up code, code examples within documentation and reformat yaml files for readability

	check-jsonschema: Verify that GitHub and ReadTheDocs workflows are valid

	Added a Zenodo/DOI configuration

0.15.1 (2022-01-14)

	Modified handling for GDAL to better support conda-build configuration

	Update to RavenPy 0.7.8

	Upgrade to PyWPS 4.5.1

0.15.0 (2021-12-22)

	Update to RavenPy 0.7.7

	Update required Python consistently to v3.7+

	Set development status to Beta.

	Replace pip-installed packages with conda-forge equivalents.

0.14.2 (2021-09-03)

	Update to RavenPy 0.7.4 (pin climpred below version 2.1.6)

	Fixed a process-breaking bug in wps_hydrobasins_shape_selection

0.14.1 (2021-08-31)

	Update to RavenPy 0.7.3 (pin xclim version 0.28.1)

0.14.0 (2021-08-30)

	Update to RavenPy 0.7.2

	Use new OWSlib WFS topological filters

	More informative install documentation

	Upgrade to PyWPS 4.4.5

0.13.0 (2021-05-14)

	Update RavenPy to 0.5.1

	Remove the name (watershed name) from the WPS interface for Raven processes

	Add random_numbers WPS param to pass optional OstRandomNumbers.txt file to Ostrich processes

	Add error handlers for regionalisation and climatology processes

0.12.1 (2021-04-16)

	Fix bug where the name of configuration files was used, while the client transmission of data does not carry the file name.

	Update notebooks

	Move draft notebooks to sandbox

0.12.0 (2021-04-14)

	Update RavenPy to 0.4.2

	Migrate utilities to RavenPy

	Add notebook for advanced forecasting

	Add notebook for probabilistic flood assessment

	Option to skip slow tests

	Add climpred verification WPS service

	Pre-commit hooks

	Install from conda Raven and Ostrich libraries

	Support passing HRUs

	Use scale/offset instead of linear_transform

	Enable GitHub CI

	Fix broken notebooks

	Improve error reporting by including stack trace in error messages.

0.11.x (2021-02-01)

	Add processes to run hydrological simulations on ECCC GEPS forecasts/hindcasts

	Add process to create forecast graphic

	Add first basic data assimilation utilities

	Factor out extra project RavenPy (at version 0.2.2), using Raven 3.0.1

	Upgrade to xclim +0.23.0

	Upgrade to xarray +0.16.2

	Add configuration options: deaccumulate

	Clean notebooks

	Pin RavenPy to 0.3.0

	Pin owslib to 0.21

	Fix RavenC binaries installation for deployment

	Move some tests to RavenPy

	Regionalization data is now bundled with RavenPy

	Upgrade and pin PyWPS to 4.4.1

	Factor out most GIS functions to RavenPy (0.3.0)

	Add nalcms-zonal-stats-raster process using pymetalink

	Simplify documentation build environment.

0.10.x (2020-03-09) Oxford

	suppress_ouput also triggers :DontWriteWatershedStorage

	Added support for ERA5 (hourly), NRCan and CANOPEX datasets

	Support linear transforms (unit changes)

	Calibration now uses :SuppressOutput by default

	Added options for rain_snow_fraction, evaporation and ow_evaporation

	Updated Raven version to 295

	Support passing shapes as zip files

0.9.x (2019-11-11)

	Return configuration files used to run model in a zip archive

0.8.x (2019-10-22)

	Added more documentation for users

	Fixed reprojection errors in GIS utilities

	Specified HydroBASINS in lieu of HydroSHEDS in processes

	Optimized memory usage in ReadTheDocs builds when using Sphinx autodoc by employing mock

	Cleaner GeoJSON outputs for many subsetting processes

	Employed ipyleaflets for notebook-based web-maps

	Run py.test on notebooks from local or remote server

0.7.x (2019-06-25)

	Regionalization database

	Graphics for frequency analysis

	Many new notebook tutorials

	Bug fixes

0.6.x (2019-06-05)

	Regionalization process allowing the estimation of parameters of ungauged watersheds

	Added time series analysis processes, including frequential analysis

	Added processes creating graphics

	GIS processes now use GeoServer capabilities

	Docker configuration

0.5.0 (2019-04-12)

	Added watershed geospatial analysis processes
- Hydroshed basin selection (with upstream contributors)
- Watershed properties
- DEM property analysis
- Land-use property analysis

	Added multi-parameter parallel simulations

	Added multi-model parallel simulations

	Added multi-bassin parallel simulations

0.4.0 (2019-03-12)

	Added model calibration processes using Ostrich

	Added support for launching a singularity image

	Added library functions for model regionalization

0.3.0 (2019-01-24)

	Adds process for MOHYSE emulator

	Adds process for HBV-EC emulator

0.2.0 (2018-11-29) Washington

	Provides generic RAVEN framework configuration

	Process for GR4J-Cemaneige emulator

	Process for HMETS emulator

 Index

Index

_static/file.png

_static/minus.png

_images/notebooks_Subset_climate_data_over_watershed_6_1.png
s

s

a7

=

T2

_images/notebooks_Subset_climate_data_over_watershed_9_2.png
lon = -71.25523051673856, lat = 47.821282931380.

20

5

=0

tasmin

75

70

B P B O S B P o
E ot L I LT
e i -

time

nav.xhtml

 Table of Contents

 		
 Raven : Hydrological modeling and analytics

 		
 Getting started

 		
 Installation

 		
 Install from Conda-Forge (suggested)

 		
 Install from GitHub

 		
 Environment Setup with Anaconda (macOS/Linux)

 		
 Environment Setup using System Libraries and Sources (Linux)

 		
 Installing and Launching RavenWPS

 		
 Start Raven PyWPS service

 		
 … or do it the lazy way

 		
 Use Ansible to deploy Raven on your System

 		
 Configuration

 		
 Command-line options

 		
 Use a custom configuration file

 		
 Notebooks

 		
 Geoprocessing

 		
 Region Selection and Map Preview with Ipyleaflet

 		
 Subsetting climate variables over a watershed

 		
 Developer Guide

 		
 Re-create a fresh environment

 		
 Building the docs

 		
 Running tests

 		
 Run tests the lazy way

 		
 Running notebooks tests

 		
 Starting local Jupyter server to edit/develop notebooks

 		
 Bulk refresh all notebooks output

 		
 Prepare a release

 		
 Bump a new version

 		
 Processes

 		
 Changes

 		
 0.18.2 (2023-07-06)

 		
 0.18.1 (2023-05-23)

 		
 0.18.0 (2023-05-23)

 		
 Major Changes

 		
 0.17.1 (2023-04-04)

 		
 Internal Changes

 		
 0.17.0 (2023-02-28)

 		
 Major Changes

 		
 Internal Changes

 		
 0.16.0 (2022-11-01)

 		
 Major Changes

 		
 Internal Changes

 		
 0.15.1 (2022-01-14)

 		
 0.15.0 (2021-12-22)

 		
 0.14.2 (2021-09-03)

 		
 0.14.1 (2021-08-31)

 		
 0.14.0 (2021-08-30)

 		
 0.13.0 (2021-05-14)

 		
 0.12.1 (2021-04-16)

 		
 0.12.0 (2021-04-14)

 		
 0.11.x (2021-02-01)

 		
 0.10.x (2020-03-09) Oxford

 		
 0.9.x (2019-11-11)

 		
 0.8.x (2019-10-22)

 		
 0.7.x (2019-06-25)

 		
 0.6.x (2019-06-05)

 		
 0.5.0 (2019-04-12)

 		
